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1. Introduction 

From the perspective of development of effective modeling 
techniques, the history of science is the story of "reduction" in the 
broadest sense, finally leading to the reduction of the complexity 
of the physical models: reduction of degrees of freedom, 
reduction of dimensionality, data compression during its 
generation, storage and processing. The reduction of complexity 
is often achieved by a change in "looking at things". From the 
mathematical point of view this often means just a change in the 
"parameterization" of the system. The effectiveness of reducing 
the complexity of the system is determined by the quality of the 
"test functions" used to represent solutions. For example, Fourier 
analysis, which is known as one of the most powerful methods for 
both analytical and numerical studies of systems described by 
partial differential equations, is based on the change of 
parameterization by coordinates through the parameterization by 
the wave vectors. Similar ideas underlie the "modal" reduction in 
the structural dynamics. Of course, an effective parameterization 
depends on the problem to be solved. Therefore, no "universal" 
reduction method does exist that can be used in any situation.  

A look at the history of science shows that in many cases a 
simple change of the parameterization lead to a breakthrough. 
Thus, the finite element method has won its position of the most 
important method in simulation technology due to the 
parameterization directly through the nodal variables. Another 
very popular and powerful idea used both in computer technology 
and biological systems (brain) is to use a hierarchical reduction. 
To a certain extent, this is a generalization of the Fourier analysis. 
Hierarchical reduction is known to anyone using Google maps. It 
allows to "zoom in and out" the images and to consider them with 
various magnification. In the contact mechanics there is a series 
of simulation methods based on hierarchical reduction as e.g. the 
multilevel Lubrecht concept [1] [2], [3] as well as the analytical 
contact mechanics of randomly rough surfaces, which have been 
developed by Persson [4].  

An important class of contact problems is the "one-contact” 
or “single asperity” problem. It appears in the measurement of 
indentation hardness, and is the basis for further generalizations to 
multi-contact systems. For the single asperity problem, there 
exists an extremely simple and effective solution which is based 
on the ideas of Jäger [5]. He suggested using as "basic functions" 
the solutions of the indentation problem of a rigid cylinder with 
variable radius. In connection with the superposition principle of 
Cattaneo [6] and Mindlin [7] which allows reduction of tangential 
contact problem to a normal one and the principle of functional 
equations of Lee [8] and Radok [9] allowing reduction of a 
viscoelastic contact to the elastic one, as well as reduction the 
problem of adhesive contact to the superposition of two solutions 
for non-adhesive contacts (JKR theory [10]), the Jäger 
superposition principle allows formulating an extremely powerful 
concept for solving the one asperity problems - the so-called 
Method of Dimensionality Reduction (MDR) [11], [12]. 

In this paper we provide a brief overview of the main 
procedures and applications fields of this method. 

2. Jäger superposition principle  

Most of the methods for solving contact problems are based 
on the so-called "fundamental solution” of elasticity theory, which 
determines the deformation of the contact under the action of a 
force. For the isotropic elastic half-space, this solution has the 
form [13] 
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where zu  is the normal displacement of a surface point, F  is 
the normal force, r  the polar radius in the contact surface, and 

*E  the effective elastic modulus. An arbitrary stress distribution 
( , )p x y′ ′ then leads to the surface deformation 
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This equation is the basis both for almost all analytical solutions 
of contact problems and for the numerical solution via Boundary 
Element Method (BEM) [14]. This way of formulating and 
solution of contact problems is possible for any media and 
geometrical configurations for which the fundamental solution is 
known. Another way is to use a superposition of indentations by 
cylindrical punches (Fig. 1b,c). 
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Fig. 1 (a) Fundamental solution is a basis of all “standard” 

formulations of analytical and numerical simulation methods in 
contact mechanics. (b) Indentation of a flat-ended punch. (c) Jäger 
representation of arbitrary axis-symmetric body as superposition of 

flat-ended cylindrical indentations. 
 

If the penetration depth d  is known as a function of the radius a  
of the contact: 

 ( )d g a= , (3) 
then, the normal force NF  can be represented as a function of 
penetration depth by the trivial equation 
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where ( )k a is stiffness of a cylindrical punch with radius a .  
Remarkable feature of the equations (3) and (4) it is that they 

can be interpreted as the result of the indentation of the modified 
profile ( )g a  in the elastic foundation with independent springs 

with spacing da  and stiffness 1 d ( ) d
2 d

k a a
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the equation (4), the use of MDR is possible under two 
conditions: (1) the contact stiffness ( )k a  of a cylindrical die 
with a radius a  must be known and (2) the rule of determining 
the modified profile ( )g a  is known. It does not matter how 
these two steps are performed: analytically, numerically or 
experimentally.  

For homogeneous media, these rules are known explicitly. If 
the initial three-dimensional profile is ( )f r  then the 
MDR-transformed profile is determined by the Eq. 
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The stiffness of a contact with a cylindrical punch is 
*( ) 2k a E a= , thus providing the rule for the stiffness of springs 

of equivalent elastic foundation  
 *d dk E x= . (6) 

 
 

 
Fig. 2 MDR-transformation: The initial profile is replaced by a 

transformed one and at the same time the elastic half-space by the 
equivalent Winkler foundation. 

 
After the solution of the equivalent one-dimensional problem 

is obtained three-dimensional exact solution can be restored with 
the help of simple rules [11]. The solution of the MDR formally 
reproduces the solution first obtained by Galin [15] and later used 
by Sneddon in his very much cited paper [16]. 

3. MDR applications: adhesive, tangential, viscoelastic 
contacts and contacts with gradient materials 

The main advantage of the MDR is that it allows solving of 
many related tasks within a single formalism. Using the same 
transformation (5), we can consider the following tasks: 
tangential contact in the approximation of Cattaneo-Mindlin [17], 
adhesive contact [17], and contacts with the viscoelastic bodies 
[18]. In the case of contacts of functionally graded materials it is 
necessary to use another transformation [19], [20]. 

In the following, we give a list of problems which can be 
handled using the MDR: 
- Normal contact of arbitrary shapes 
- Tangential contact of arbitrary shapes 
- Rolling contact [21], [22] 
- Adhesive contacts of rotationally symmetric shapes 
- Heat transfer and generation in frictional contacts 
- Electrical conduction (arbitrary shapes) 
- Contacts with viscoelastic media (arbitrary shapes) 
- Contacts with gradient media  
- Frictional damping (arbitrary shapes and loading histories) 
- Multiscale roughness 
- Wear calculation for rotationally symmetric shapes 
- Torsional contact [23] 

 
4. Conclusion: Why the Winkler foundation is so 
reliable? 

We now understand why the Winkler foundation, which has 
been used over decades in numerous applications for qualitative 
analysis of contact problems, does work so amazingly well. The 
MDR shows that in many cases it provides even exact solutions: 
one just has to follow the rules of the Method of Dimensionality 
Reduction.  
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